Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Bromoanilinium perchlorate 18-crown-6 clathrate

Min Guo and Min Min Zhao*

Ordered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zmmzyahfdzg@126.com

Received 15 September 2010; accepted 9 October 2010

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.104; data-to-parameter ratio = 18.5.

The reaction of 4-bromoaniline, 18-crown-6, and perchloric acid in methanol yields the title compound, $C_6H_7BrN^+$.- $ClO_4^- \cdot C_{12}H_{24}O_6$, in which the protonated $-NH_3^+$ group forms three bifurcated $N-H \cdot \cdot \cdot O$ hydrogen bonds to the O atoms of the crown ether.

Related literature

For similar crown ether clathrates, see: Akutagawa *et al.* (2002); Ge *et al.* (2010); Zhao (2010). For their ferroelectric properties, see: Zhang, Cheng *et al.* (2009); Zhang, Ye *et al.* (2009); Ye *et al.* (2009). For related structures, see: Ge & Zhao (2010*a*,*b*); Zhao & Qu (2010*ab*).

Experimental

Crystal data	
$C_6H_7BrN^+ \cdot ClO_4^- \cdot C_{12}H_{24}O_6$	a = 15.583 (7) Å
$M_r = 536.79$	b = 11.469 (5) Å
Orthorhombic, Pnma	c = 12.633 (6) Å

V = 2257.7 (18) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Rigaku SCXmini diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\rm min} = 0.671, T_{\rm max} = 0.678$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	
$vR(F^2) = 0.104$	
S = 1.01	
2694 reflections	

 $\mu = 1.99 \text{ mm}^{-1}$ T = 93 K $0.20 \times 0.20 \times 0.20 \text{ mm}$

23692 measured reflections 2694 independent reflections 2561 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$

146 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.50 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1A···O2	0.91	2.13	2.864 (2)	137
$N1 - H1A \cdots O3$	0.91	2.18	2.938 (2)	140
$N1 - H1B \cdots O4$	0.91	2.10	2.850 (3)	139
$N1 - H1B \cdot \cdot \cdot O3^{i}$	0.91	2.20	2.938 (2)	138
$N1 - H1C \cdot \cdot \cdot O2^{i}$	0.91	2.10	2.864 (2)	141
$N1 - H1C \cdot \cdot \cdot O1$	0.91	2.18	2.875 (3)	133
$N1-H1A\cdots O2$ $N1-H1A\cdots O3$ $N1-H1B\cdots O4$ $N1-H1B\cdots O3^{i}$ $N1-H1B\cdots O2^{i}$ $N1-H1C\cdots O2^{i}$ $N1-H1C\cdots O1$	0.91 0.91 0.91 0.91 0.91 0.91	2.13 2.18 2.10 2.20 2.10 2.18	2.864 (2) 2.938 (2) 2.850 (3) 2.938 (2) 2.864 (2) 2.875 (3)	137 140 139 138 141 133

Symmetry code: (i) $x, -y + \frac{1}{2}, z$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2210).

References

- Akutagawa, T., Hashimoto, A., Nishihara, S., Hasegawa, T. & Nakamura, T. (2002). J. Supramol. Chem. 2,175–186.
- Ge, J.-Z. & Zhao, M.-M. (2010a). Acta Cryst. E66, m739.
- Ge, J.-Z. & Zhao, M.-M. (2010b). Acta Cryst. E66, 01478.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.
- Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.
- Zhang, W., Ye, H. Y. & Xiong, R. G. (2009). Coord. Chem. Rev. 253, 2980– 2997.
- Zhao, M. M. (2010). Acta Cryst. E66, 01618.
- Zhao, M. M. & Qu, Z. R. (2010a). Acta Cryst. C66, m188-m190.
- Zhao, M. M. & Qu, Z. R. (2010b). Acta Cryst. C66, m215-m217.

supplementary materials

Acta Cryst. (2010). E66, o2836 [doi:10.1107/S1600536810040481]

4-Bromoanilinium perchlorate 18-crown-6 clathrate

M. Guo and M. M. Zhao

Comment

There is currently much interest in crown ethers due to their ability to form non-covalent, H-bonding complexes with ammonium cations both in solid and in solution. Not only the size of the crown ether, but also the nature of the ammonium cation $(-NH_4^+, RNH_3^+, R_2NH_2^+, etc)$ can influence on the stoichiometry and stability of these host–guest complexes (Zhao *et al.* 2010). The host molecules combine with the guest species by intermolecular interaction, and if the host molecule possess some specific sites, it is easy to realise high selectivity in ion or molecular recognitions. 18-Crown-6 have the highest affinity for ammonium cation RNH₃⁺.

Dielectric permittivity of the title compound is tested to systematically investigate the ferroelectric phase transitions materials (Ye *et al.*, 2009; Zhang *et al.*, 2009). The title compound has no dielectric anomaly with the value of 3.5 and 7.8 under 1M Hz in the temperature from 80 to 430 K (m.p.> 453 K), suggesting that the compound should be no distinct phase transition occurred within the measured temperature range.

The title compound is composed of cationic $[C_6BrNH_7(18-Crown-6)]^+$ and one single anionic $[ClO_4]^-$ anions (Fig. 1). Supramolecular rotators was assembled between protonated 4-bromoaniline $(C_6BrH_4--NH_3)^+$ and 18-crown-6 by of hydrogen-bonding. The ammonium moieties of $(-NH_3^+)$ cations were interacted with the oxygen atom of crown ethers through six simple N--H···O hydrogen bonding, forming 1:1 supramolecular rotator-stator structures.

Supramolecular cation structure, $[C_6BrNH_7(18-Crown-6)]^+$, were introduced as counter cations to $[ClO_4]^-$ anions. The crown adopts a conformation in which the rings show some distortion from the mean plane. The C—N bonds of $[C_6BrNH_7]^+$ were almost perpendicular to the mean oxygen planes of crown ethers. Cl has a flattened tetrahedral coordination by four O⁻ ions [range of *cis*-bond angles = 109.08 (14)–109.88 (15) °; dav (Cl—O) = 1.444 (2)–1.449 (2) Å].

The title compound was stabilized by intramolecular N—H···O hydrogen bonds, but no intermolecular hydrogen bond was observed (Fig. 2). The intramolecular N—H···O hydrogen bonding length are within the usual range: 2.850 (3) and 2.938 (2) Å.

Experimental

 $C_6BrNH_6.HClO_4$ (2 mmol, 0.546 g) and 18-crown-6 (2 mmol, 0.528 g) were dissolved in methanol solution. The precipitate was filtered out. Two days later, single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of methanol solution at 0°C.

Refinement

All the C—H hydrogen atoms were calculated geometrically and with C—H distances ranging from 0.93 to 0.97 Å and were allowed to ride on the C and O atoms to which they are bonded. With which $U_{iso}(H) = 1.2Ueq(C)$.

All the N—H hydrogen atoms were calculated geometrically. The positions of the H atoms of the nitrogen atoms were refined using a riding model with N—H = 0.91 Å and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figures

Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

4-Bromoanilinium perchlorate-18-crown-6 (1/1)

Crystal data

$C_6H_7BrN^+ \cdot ClO_4^- \cdot C_{12}H_{24}O_6$
$M_r = 536.79$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
<i>a</i> = 15.583 (7) Å
<i>b</i> = 11.469 (5) Å
c = 12.633 (6) Å
$V = 2257.7 (18) \text{ Å}^3$
Z = 4

F(000) = 1112 $D_x = 1.579 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 6002 reflections \theta = 3.1-27.5° \mu = 1.99 mm^{-1} T = 93 K Prism, colorless 0.20 \times 0.20 \times 0.20 mm

Data collection

Rigaku SCXmini diffractometer	2694 independent reflections
Radiation source: fine-focus sealed tube	2561 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.046$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
CCD_Profile_fitting scans	$h = -20 \rightarrow 20$

Absorption correction: multi-scan	$k = 14 \times 14$
(CrystalClear; Rigaku, 2005)	$\kappa = -14 \rightarrow 14$
$T_{\min} = 0.671, \ T_{\max} = 0.678$	$l = -16 \rightarrow 16$
23692 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.104$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0645P)^2 + 1.990P]$ where $P = (F_o^2 + 2F_c^2)/3$
2694 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
146 parameters	$\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
C5	0.28939 (14)	0.14670 (19)	0.53702 (17)	0.0192 (5)	
H5A	0.3403	0.1418	0.5796	0.023*	
H5B	0.2406	0.1491	0.5834	0.023*	
C6	0.28315 (14)	0.0420 (2)	0.46603 (19)	0.0189 (4)	
H6A	0.2881	-0.0283	0.5069	0.023*	
H6B	0.3289	0.0435	0.4152	0.023*	
C7	0.18311 (14)	-0.06318 (18)	0.35971 (17)	0.0172 (4)	
H7A	0.2267	-0.0800	0.3083	0.021*	
H7B	0.1816	-0.1258	0.4101	0.021*	
C8	0.09748 (14)	-0.05164 (18)	0.30595 (17)	0.0171 (4)	
H8A	0.0552	-0.0262	0.3561	0.020*	
H8B	0.0797	-0.1256	0.2778	0.020*	
C9	0.02573 (13)	0.04351 (19)	0.16556 (17)	0.0164 (4)	
H9A	0.0147	-0.0262	0.1257	0.020*	

supplementary materials

H9B	-0.0206	0.0546	0.2145	0.020*	
C10	0.03150 (14)	0.14646 (18)	0.09257 (16)	0.0159 (4)	
H10A	-0.0190	0.1508	0.0492	0.019*	
H10B	0.0806	0.1386	0.0472	0.019*	
01	0.29171 (15)	0.2500	0.47351 (17)	0.0175 (4)	
O2	0.20209 (9)	0.04497 (13)	0.41238 (12)	0.0166 (3)	
O3	0.10476 (9)	0.03158 (13)	0.22212 (12)	0.0156 (3)	
O4	0.03915 (14)	0.2500	0.15568 (16)	0.0148 (4)	
O5	0.11943 (10)	0.14672 (14)	0.73375 (13)	0.0243 (4)	
O6	0.01814 (13)	0.2500	0.83702 (18)	0.0184 (5)	
07	0.16415 (14)	0.2500	0.88559 (18)	0.0200 (5)	
Cl1	0.10535 (4)	0.2500	0.79722 (6)	0.01469 (17)	
N1	0.18963 (16)	0.2500	0.2839 (2)	0.0142 (5)	
H1A	0.1736	0.1752	0.2975	0.021*	0.50
H1B	0.1462	0.2879	0.2501	0.021*	0.50
H1C	0.2016	0.2870	0.3459	0.021*	0.50
C1	0.4115 (2)	0.2500	0.0932 (2)	0.0179 (6)*	
C2	0.37554 (14)	0.35578 (19)	0.12293 (17)	0.0185 (4)*	
H2A	0.4006	0.4272	0.1007	0.022*	
C3	0.30225 (14)	0.35541 (18)	0.18573 (16)	0.0164 (4)	
H3A	0.2769	0.4268	0.2074	0.020*	
C4	0.26646 (19)	0.2500	0.2164 (2)	0.0139 (5)	
Br1	0.51210 (2)	0.2500	0.00763 (3)	0.02519 (13)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C5	0.0183 (10)	0.0250 (12)	0.0142 (10)	0.0009 (8)	-0.0030 (8)	0.0049 (9)
C6	0.0143 (10)	0.0211 (11)	0.0212 (10)	0.0029 (8)	-0.0023 (8)	0.0037 (9)
C7	0.0202 (10)	0.0131 (9)	0.0184 (10)	0.0006 (8)	0.0010 (8)	0.0021 (8)
C8	0.0199 (10)	0.0141 (10)	0.0173 (10)	-0.0025 (8)	0.0004 (8)	0.0022 (8)
С9	0.0161 (9)	0.0140 (10)	0.0192 (10)	-0.0025 (8)	-0.0022 (8)	-0.0007 (8)
C10	0.0162 (9)	0.0168 (10)	0.0147 (10)	-0.0008 (8)	-0.0021 (8)	-0.0032 (8)
01	0.0214 (11)	0.0173 (10)	0.0138 (10)	0.000	-0.0018 (8)	0.000
02	0.0158 (7)	0.0142 (7)	0.0199 (7)	0.0015 (6)	-0.0036 (6)	0.0005 (6)
03	0.0158 (7)	0.0138 (7)	0.0172 (7)	-0.0020 (5)	-0.0012 (6)	0.0033 (6)
O4	0.0195 (10)	0.0101 (9)	0.0148 (10)	0.000	-0.0032 (8)	0.000
05	0.0232 (8)	0.0215 (8)	0.0281 (9)	0.0019 (6)	0.0025 (7)	-0.0111 (7)
O6	0.0130 (10)	0.0196 (11)	0.0227 (12)	0.000	0.0015 (8)	0.000
07	0.0172 (11)	0.0225 (11)	0.0203 (11)	0.000	-0.0038 (9)	0.000
Cl1	0.0135 (3)	0.0137 (3)	0.0168 (3)	0.000	0.0006 (2)	0.000
N1	0.0141 (12)	0.0124 (11)	0.0162 (12)	0.000	-0.0009 (9)	0.000
C3	0.0182 (10)	0.0148 (10)	0.0161 (10)	0.0001 (8)	-0.0017 (8)	-0.0017 (8)
C4	0.0135 (13)	0.0183 (14)	0.0099 (12)	0.000	-0.0025 (10)	0.000
Br1	0.01691 (19)	0.0359 (2)	0.0227 (2)	0.000	0.00469 (11)	0.000

Geometric parameters (Å, °)					
C5—O1	1.431 (2)	C10—H10B	0.9600		

C5—C6	1.502 (3)	O1—C5 ⁱ	1.431 (2)
С5—Н5А	0.9601	O4—C10 ⁱ	1.435 (2)
С5—Н5В	0.9600	O5—Cl1	1.4471 (16)
C6—O2	1.434 (3)	O6—C11	1.449 (2)
С6—Н6А	0.9601	O7—Cl1	1.444 (2)
С6—Н6В	0.9598	Cl1—O5 ⁱ	1.4471 (16)
С7—О2	1.438 (3)	N1—C4	1.470 (4)
С7—С8	1.503 (3)	N1—H1A	0.9100
С7—Н7А	0.9599	N1—H1B	0.9100
С7—Н7В	0.9600	N1—H1C	0.9100
C8—O3	1.430 (2)	C1—C2	1.388 (3)
C8—H8A	0.9601	C1—C2 ⁱ	1.388 (3)
C8—H8B	0.9601	C1—Br1	1.905 (3)
С9—ОЗ	1.430 (3)	C2—C3	1.391 (3)
C9—C10	1.501 (3)	C2—H2A	0.9500
С9—Н9А	0.9600	C3—C4	1.387 (3)
С9—Н9В	0.9600	С3—НЗА	0.9500
C10—O4	1.435 (2)	C4—C3 ⁱ	1.387 (3)
C10—H10A	0.9600		
O1—C5—C6	109.20 (18)	С9—С10—Н10А	110.0
O1—C5—H5A	109.9	O4—C10—H10B	110.1
С6—С5—Н5А	110.0	С9—С10—Н10В	109.9
O1—C5—H5B	109.7	H10A—C10—H10B	108.4
С6—С5—Н5В	109.6	C5 ⁱ —O1—C5	111.7 (2)
H5A—C5—H5B	108.3	C6—O2—C7	112.27 (16)
O2—C6—C5	108.66 (17)	C8—O3—C9	111.43 (15)
O2—C6—H6A	110.2	C10 ⁱ —O4—C10	111.7 (2)
С5—С6—Н6А	110.2	07—Cl1—O5 ⁱ	109.40 (9)
O2—C6—H6B	109.8	O7—Cl1—O5	109.40 (9)
С5—С6—Н6В	109.7	O5 ⁱ —Cl1—O5	109.88 (15)
H6A—C6—H6B	108.4	O7—Cl1—O6	109.08 (14)
O2—C7—C8	108.39 (17)	O5 ⁱ —Cl1—O6	109.53 (9)
O2—C7—H7A	109.9	O5—Cl1—O6	109.53 (9)
С8—С7—Н7А	109.9	C4—N1—H1A	109.5
O2—C7—H7B	110.1	C4—N1—H1B	109.5
С8—С7—Н7В	110.1	H1A—N1—H1B	109.5
H7A—C7—H7B	108.4	C4—N1—H1C	109.5
O3—C8—C7	108.84 (16)	H1A—N1—H1C	109.5
O3—C8—H8A	109.9	H1B—N1—H1C	109.5
С7—С8—Н8А	109.8	$C2-C1-C2^{i}$	121.9 (3)
O3—C8—H8B	109.8	C2—C1—Br1	119.06 (14)
С7—С8—Н8В	110.2	C2 ⁱ —C1—Br1	119.06 (14)
H8A—C8—H8B	108.4	C1—C2—C3	118.9 (2)
O3—C9—C10	109.31 (17)	C1—C2—H2A	120.6
O3—C9—H9A	109.7	С3—С2—Н2А	120.6
С10—С9—Н9А	110.1	C4—C3—C2	119.5 (2)

supplementary materials

О3—С9—Н9В	109.8	С4—С3—Н3А	120.3
С10—С9—Н9В	109.7	С2—С3—НЗА	120.3
Н9А—С9—Н9В	108.3	C3 ⁱ —C4—C3	121.4 (3)
O4—C10—C9	108.34 (17)	C3 ⁱ —C4—N1	119.32 (14)
O4—C10—H10A	110.0	C3—C4—N1	119.32 (14)
Symmetry codes: (i) x , $-y+1/2$, z .			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A···O2	0.91	2.13	2.864 (2)	137
N1—H1A···O3	0.91	2.18	2.938 (2)	140
N1—H1B···O4	0.91	2.10	2.850 (3)	139
N1—H1B···O3 ⁱ	0.91	2.20	2.938 (2)	138
N1—H1C···O2 ⁱ	0.91	2.10	2.864 (2)	141
N1—H1C···O1	0.91	2.18	2.875 (3)	133
Symmetry codes: (i) x , $-y+1/2$, z .				

